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ABSTRACT 
The Critical Assessment of Genome Interpretation 

(CAGI) has proposed a challenge to devise a 

computational method for predicting the phenotypic 

consequences of genetic variants of a lysosomal 

hydrolase enzyme known as α-N-acetyl-

glucosaminidase (NAGLU). In 2014, the Human Gene 

Mutation Database released that 153 NAGLU 

mutations associated with MPS IIIB and 90 of them 

are missense mutations. The ExAC dataset indicates 

189 missense mutations NAGLU based on about 

60,000 individual sequenced exomes and 24 of them 

are known to be disease associated. Biotechnology 

company BioMarin has quantified the relative 

functionality of NAGLU for the remaining subset of 

165 missense mutations. For this particular 

challenge, we examined the subset missense 

mutations within the ExAC dataset and predicted the 

probability of a given mutation affecting the level of 

enzymatic activity. In doing so, we hoped to learn 

which changes in amino acid physicochemical 

properties can be tolerated and which cannot be. 

 
Figure 1: NAGLU Protein Structure 

Generated by RaptorX 

 

Amino acid substitution (AAS) prediction methods are 

mainly based on the sequence and structure 

information. Simple comparisons between different 

AAS methods are not only difficult, but also irrational 

because each method was tested on various datasets 

and based on varied versions of databases. Currently, 

several AAS prediction methods have been 

introduced. PolyPhen-2, an updated version of 

PolyPhen, is a tool used to predict possible impacts of 

an amino acid substitution on the structure and 

function. Users are required to provide protein or SNP 

identifier, protein sequences, substitution positions, 

etc. A score is provided, ranging from 0 to 1, 

corresponding to the probability of a mutation 

resulting in no functionality for the enzyme. 

Once the probability score was generated, the dataset 

was then run through a large machine learning 

decision forest algorithm. This attempted to predict 

the PolyPhen-2 probability score using the other 

information about the mutation (amino acid type, 

location, allele frequency, etc.) as independent 

variables. This generated a predicted aggregate score 

for each mutation, which was then reported back to 

CAGI. The results of the analysis are siginifcant 

enough to hold confidence that the scores are decent 

predictors of enzymatic activity given a mutation in 

the NAGLU amino acid sequence. 
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BACKGROUND 

Sanfilippo Syndrome type B disease 

(Mucopolysaccharidosis IIIB, MPS IIIB) is an 

autosomal recessive, neurodegenerative disease of 

children, with the clinical symptoms including 

intellectual disability, behavior disturbance and death 

in second or third decade. MPS IIIB is the inborn 

error of glycosaminoglycan metabolism and is 

characterized by the systematic accumulation of 

heparan sulfate. The lysosomal hydrolase α-N-acetyl-

glucosaminidase (NAGLU) performs the function of 

removing terminal α-N-acetyl-glucosaminidase 

residues from heparin sulfate and lacking NAGLU is 

one of the four systematic defects that cause MPS 

IIIB. 

 

 

CONTEST 
We have elected to submit our results predicting the 

effects of the NAGLU enzymatic activity to the 

Critical Assessment of Genome Interpretation contest. 

The submitted prediction is numerically valued in the 

following manner: 

Minimum 

Score: 0 

→ 

Maximum Score: 1 

No enzymatic 

activity 

Wild-type 

enzymatic activity 

Table 1: Prediction Scoring 

Along with the above values, we reported the amino 

acid mutation being scored and the standard 

deviation of the prediction. CAGI also allows for a 

comment to be added, in which we have included 

information about whether the mutation is 

nonsynonymous or not, deleterious or neutral, and 

benign or damaging. 

IMPACT AND SIGNIFICANCE 
According to the work done by Meikel, et. al., in Prevalence of Lysosomal Storage Disorders, Sanfilippo syndrome 

type IIIB has a prevalence of about 1 in 200,000 people (Meikel, 1999). This disease generally manifests in young 

children, carried by an autosomal recessive gene. For those affected, the symptoms are debilitating and nonetheless 

horrible.  

The National MPS Society reports that most of the symptoms are highly neurological. “Overactive and difficult” 

behavior is generally seen in children. As the disease progresses with age, many developmental problems occur such 

as chewing on the hands, never being able to be toilet trained, learning disabilities, etc. Other symptoms may persist 

including nausea, digestive problems, and diarrhea as well as the apparent facial formation and distinctive look of 

MPS-III patients (MPS III, 2011). 

Better understanding of this disease will hopefully lead to better diagnosis and better treatment research. 

Currently, there is no cure for the disease and many people with the disease die at a very early age. Research in 

gene therapy, enzymatic therapy, and other treatments may benefit from this genetic analysis. 
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ANALYSIS PROCESS 

 
Figure 2: Workflow of the Analysis Process 

STRUGGLES WITH VCF FORMAT 
Data from 1000 Genomes is reported in the Variant Call Format. For MPS-111B, the interest is only in a particular 

region on the 17th chromosome. However, only data for the entire 17th chromosome is available for direct download. 

This means that once the data was downloaded, the file needed to be trimmed such that we are only working with 

the region of interest. Upon downloading the entire chromosome, the file was noticeably large: ~23GB for the .vcf 

file. At this size, it’s far too large to manage simply by using a spreadsheet program. This format was also initially 

difficult to use in its current tabular layout as it seemed to have to needed information, but presented in the wrong 

way for what we want to do with it. See table 2 below. 

Table 2: Sample of the .vcf file for the human chromosome 17 

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001 NA00002 NA00003 

17 14370 rs605

4257 

G A 29 PASS NS=3;

DP=14

;AF=0.

5;DB;

H2 

GT:GQ:DP

:HQ 

0|0:48:1:5

1,51 

1|0:48:8:5

1,51 

1/1:43:5: 

17 17330 rs604

0361 

T A 3 q10 NS=3;

DP=11

;AF=0.

017 

GT:GQ:DP

:HQ 

0|0:49:3:5

8,50 

0|1:3:5:65

,3 

0/0:41:3 

17 1110696 rs604

0355 

A G,T 67 PASS NS=2;

DP=10

;AF=0.

333,0.6

67;AA

=T;DB 

GT:GQ:DP

:HQ 

1|2:21:6:2

3,27 

2|1:2:0:18

,2 

2/2:35:4 
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VCFTOOLS 
The discovery of a Perl add-in called VCFTools proved to simplify the process of distilling the ~23GB file into a more 

manageable and useful format. We ran the tool on the entire .vcf chromosome file and summarized the data to a 

format that reports the frequency of different alleles at each position on the chromosome. This is summarized from 

the 2,504 different genomes in the original file. By doing this summarization, the file was much smaller and we then 

removed the regions of the chromosome not in question. See table 3 below. 

Chr Position NumAlleles Allele1 Allele2 

17 40688016 2 T:0.9998 C:0.000199681 

17 40688079 2 G:0.999601 C:0.000399361 

17 40688091 2 G:0.986022 C:0.0139776 

17 40688124 2 G:0.997604 T:0.00239617 

17 40688147 2 G:0.9998 A:0.000199681 

Table 3: Summarized information after the use of VCFTools 

THE CAGI DATA 
The dataset given by CAGI includes information for nucleotide changes at various positions and the resulting amino 

acid substitution that results from that nucleotide change (Critical Assessment of Genome Interpretation, 2015) See 

table 4 below. 

chromosome variant_position cDNA_nucleotide_change AA_substitution 

17 40688337 47C>T A16V 

17 40688640 350T>C V117A 

17 40688642 352C>T P118S 

17 40689424 392A>C Y131S 

17 40689436 404T>G V135G 

17 40689442 410C>T T137M 

17 40689453 421T>A S141T 

17 40689487 455G>A R152Q 

17 40689493 461T>C I154T 

17 40689504 472G>T A158S 

17 40689538 506G>A S169N 

Table 4: Sample of the CAGI NAGLU dataset for prediction 

 

POLYPHEN-2 SOFTWARE: 

INSTALLATION AND EXECUTION 
The first step required when installing this 

standalone software is to ensure that the computer 

has three specific perl modules present. Those 

modules are XML::Simple, DBD::SQLite, and 

LWP::SImple. In order to check if the computer had 

these modules, within the terminal window the 

command “cpan -l” was used. This command then 

prints a verbose list of the Perl modules already 

installed. Once it was determined that these modules 

were not present, the “cpan” command was used 

again, this time without options. Executing this 

command then opens the cpan shell, which provides 

an access point to download the necessary Perl 

modules from the “Comprehensive Perl Archive 

Network.” See figure 3 below. 
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Figure 3: CPAN functionality 

 

As shown in the screenshot, within the cpan shell one 

may easily search for the necessary module if the 

name is known. For example, in order to check on the 

availability of the XML::Simple Perl module, typing “i 

/XML::Simple/” will show the package. The command 

“get” and “install” where then used to acquire the 

modules and have them ready to use in the local 

library. Once completed, the task of downloading the 

source code from the main PolyPhen-2 website was 

done and the tarballs were then moved to the home 

directory. The same website also provided tarballs for 

the precomputed MLC and MultiZ alignment files, 

which are necessary in order to decrease the overall 

computational time of the program, as well as 

bundled databases. From the home directory the 

tarballs were all then extracted using the 

recommended command from the documentation 

which may be generalized as “tar vxjf 

large_files.tar.bz2.” Once extraction was complete, the 

next task was using ftp to complete the massive bulk 

downloads of ncbi-blast-2.2.31+ tools, UniRef100 

nonredundant protein sequence databases, the PDB 

database and DSSP database. Next, the configuration 

of the software prompts the user to provide yes/no 

answers as to the validity of the path to specific areas 

in the PolyPhen directory structure, and make any 

necessary changes, as shown below in figure 4. 

 

 
 

Figure 4: Configuration prompt of PolyPhen-2 
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With the installation procedure complete, the 

program itself is broken up into three main 

components. The tools within PolyPhen-2 run in a 

sequential order, beginning with the optional first 

tool, mapsnps.pl. For the CAGI dataset, which 

provided the reference amino acids and their mutated 

variant given the position, the PolyPhen-2 input 

variant format was chosen as the method for running 

the data through the pipeline. Mapsnps.pl is an 

annotation tool that uses the genomic coordinates for 

each SNP and produces an output file of those 

variants which produce missense mutations, which is 

formatted to be piped into run_pph.pl. There are 

multiple formats for input files, some of which contain 

only the original and mutated amino acid for a given 

protein, making this step optional as a result. For the 

1000 genomes VCFs, the only information present is 

the genomic position and the variants, making the 

initial mapsnps.pl tool necessary in order to extract 

the nsSNPs. This leads into the next tools for protein 

variant annotation and probabilistic classification, 

run_pph.pl and run_weka.pl. The PolyPhen-2 output 

file for SNPs belonging to our CAGI dataset was 

subsampled and reformatted by a piece of Perl code 

written by us in the table below, in order to highlight 

columns of interest. Seen below in table 5, a high 

probability close to 1.0 indicates amino acid change 

likely to damage the functionality of the protein. 

 

 
Figure 5: Sample code for column selection 

 

Table 5: Sample PolyPhen-2 output of CAGI dataset parsed by the code described above. 

Shown above, the output of PolyPhen-2 generated a 

38 column table, so the columns relevant for our 

prediction purposes were extracted using the PERL 

script above.  

As previously stated, the data from the 1000 genomes 

is provided as a vcf file, which provides the genomic 

coordinates of each of the mutations, but lacks any 

clear information to ascertain which result in 

nonsynonymous mutations within the exonic regions 
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for NAGLU. Polyphen-2 has a perl script 

“mapsnps.pl” to handle this task, however the output 

from this tool showed that there were no non-

synonymous mutations of the 253 variants called 

within the region of the NAGLU gene. This result 

seemed unlikely, and a test was done by joining the 

table of 1000 genomes SNPs on the table of CAGI 

nsSNPs, which showed some matches. To determine 

which variants from the 1000 genomes data were 

nsSNPs, and thus variants that could serve as input 

for run_pph.pl and the run_weka.pl scripts, 

wANNOVAR was used. These variants need to be 

processed through this software in order to make the 

necessary comparisons across datasets.  

WANNOVAR 
To accomplish the task of accurately describing the 

1000 genomes dataset, wANNOVAR was employed. 

This tool can be found at http://wannovar.usc.edu/, 

and allows for the selection the hg19 genome build 

used by 1000 genomes, and several different file 

formats. The header from the original VCF was not 

maintained, so the input of the variants was 

converted to “annovar” format, which is extensively 

described in the documentation and available 

tutorials. In brief, the input format describes the 

variant genomic position start and end, reference 

nucleotide, and the variant nucleotide in separate 

columns. This web-based tool, created by Dr. Kai 

Wang at the University of Southern California, 

annotates the set of variants, allowing for the 

extraction of those SNPs designated as being exonic 

and resultant in nonsynonymous mutations. 

  

DATABASE CREATION 
As you can see, there are various steps in our analysis 

process that have yielded separate datasets. In order 

to harness all of the information that has been 

collected, a database was created with architecture to 

handle and combine the various data. See table 6. 

Table Utilized Contents Source 

1000GenomesSummary Alleles and their respective 

frequencies for each position on the 

chromosome 

1000 Genomes (Summarized 

by VCFTools) 

AARef Reference amino acids by position 

for NAGLU. Also contains domain 

information for the sequence. 

NCBI 

CAGIData Wild Type/Mutant codon base and 

amino acid changes by position. 

(Additional information: amino 

acid types, domain, and an 

indicator if the amino acid type 

changed. 

CAGI 

(Additional information 

added manually) 

PolyPhen_CAGIPredictions Predictions for functionality 

changes in the amino acid 

mutations from the CAGI dataset 

input. 

PolyPhen2 

wANNOVAR1000Gexome_summary Exonic function for each position. 

(Nonsynonymous mutations) 

References 1000 Genomes. 

wANNOVAR 

Table 6: Database tables used for in analysis 

These data were housed in a Microsoft SQL Server 

2014 server instance. Importing the datasets was 

performed using SQL Server Integration Services, an 

enterprise-grade Extract, Transform, Load (ETL) 

software. Once the data was successfully put into the 

database in their respective tables, the tables were 

joined together by amino acid sequence position. This 

combines, for example the .vcf summary with the 

CAGI data with the PolyPhen probabilities, resulting 

in one final SQL view that was used as the input 

dataset for our analysis. 
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MACHINE LEARNING 
Using the conglomerate dataset, we utilized a large Decision Forest algorithm to make our prediction. At first, we 

ran the data through R using the randomForest package (RColorBrewer, 2012). See figure 6. 

The R package was called using the following parameters: 

Parameter Selection 

Dependent Variable pph2_prob 

Independent Variables Wt_nucleotide 

Mut_nucleotide 

AA_position 

Wt_AA_Name 

Mut_AA_Name 

Wt_AA 

Mut_AA 

Mut_Codon_Pos 

Wt_AA_type 

Mut_AA_type 

AATypeChange 

Domain 

allele1_freq 

Number of Trees 5, 25, … ,10,000 
Table 7: Parameters for Decision Forest Algorithm. 

(The same parameters apply for Microsoft Azure Machine 

Learning as well as the R randomForest package.) 
 

##Must have randomForest package installed 
#install.packages("randomForest") 
 
##Microsoft Azure Machine Learning Initialization 
#Define Datasets by Port 
train <- maml.mapInputPort(1) #class: data.frame 
test <- maml.mapInputPort(2) #class: data.frame 
 
#Call the Library 
library(randomForest) 
 
#Get Probabilistic Complements 
train$pph2_prob <- 1-train$pph2_prob 
test$pph2_prob <- 1-test$pph2_prob 
 
##Generate Prediction 
forest <- randomForest(pph2_prob ~ Wt_nucleotide + Mut_nucleotide + AA_position + 
Wt_AA_name + Mut_AA_name + Wt_AA + Mut_AA + Mut_Codon_Pos + Wt_AA_type + Mut_AA_type + 
AATypeChange + Domain + allele1_freq,data = train,ntree = 25) 
pred <- as.data.frame(predict(forest,test,type="response",predict.all=TRUE) 
 
#Add Aggregate Prediction Score to Test Data 
test$prediction <- pred$aggregate 
 
#Calculate Standard Deviation for randomForest Trees and Add to Test Data 
indiv <- pred 
indiv$aggregate <- NULL 
test$pred.sd <- apply(indiv,1,sd) 
 
#Map Output to Azure ML Output Port 
maml.mapOutputPort("test"); 
 
################################### 

Figure 6: Sample R-Script for randomForest package 

(For use in Azure Machine Learning environment) 

 

Although the randomForest package works well for a 

small number of trees, there was evidence to support 

that using a larger number of random forest trees to 

make the prediction would increase the predictive 

power of the algorithm and therefore yield a better 

result. To handle this, we harnessed the power of the 
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cloud by then running the dataset through the 

Microsoft Azure Machine Learning system (Microsoft 

Corporation, 2015). This allowed for much larger 

random forests to be created. See figure 7. 

For our final prediction, we created a forest that 

contained 10,000 trees. Running this through R on a 

local desktop would have taken a very long time. The 

cloud, however, completed the experiment in 15.25 

minutes. The experiment adds two columns to the 

data: Score Label Mean (the arithmetic mean of the 

predictions of each of the 10,000 trees) and Scored 

Label Standard Deviation (the standard deviation of 

the prediction over all 10,000 individual trees), which 

is required by CAGI. 

 

 
Figure 7: Azure Machine Learning Workflow 
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RESULTS 
After attaining the predictions from the Azure 

Machine Learning system, we joined the data back up 

with the rest of the information housed in our 

database. CAGI allows for only four columns to be 

submitted to the contest: AA_subsitution (from their 

original dataset), relative activity (predicted using the 

PolyPhen2 probabilities in the Azure Machine 

Learning Decision Forest experiment), 

standard_deviation (computed from the 10,000 

different predictions from the large Decision Forest), 

and comment. For the comment column, we included 

the PolyPhen2 predictions along with the 

wANNOVAR functional information. See table 8 

below. 

AA_substitution relative activity standard_deviation comment 

A16V 0.404481 0.569491 PolyPhen2 Prediction: none|PolyPhen2 

Class: unknown| wANNOVAR Exonic 

Function: nonsynonymous SNV 

V117A 0.376404 0.41849 PolyPhen2 Prediction: deleterious|PolyPhen2 

Class: possibly damaging|  

P118S 0.630965 0.421451 PolyPhen2 Prediction: deleterious|PolyPhen2 

Class: possibly damaging|  

Y131S 0.041277 0.198787 PolyPhen2 Prediction: deleterious|PolyPhen2 

Class: probably damaging|  

V135G 0.47299 0.328624 PolyPhen2 Prediction: neutral|PolyPhen2 

Class: benign|  

T137M 0.022574 0.079438 PolyPhen2 Prediction: deleterious|PolyPhen2 

Class: probably damaging| wANNOVAR 

Exonic Function: nonsynonymous SNV 
Table 8: Sample of the submission dataset for the CAGI competition 

The Evaluate Model node in the Azure Machine Learning studio conveniently reports model metrics for the Decision 

Forest experiment. See table 9. 

Final Decision Forest Output Statistics: 

Mean Absolute Error 0.203338 

Root Mean Squared Error 0.267673 

Relative Absolute Error 0.509781 

Relative Squared Error 0.394408 

Coefficient of Determination 0.605592 

Average Standard Deviation 0.331365452 

Minimum Standard Deviation 0.002228193 

Maximum Standard Deviation 0.645632309 
Table 9: Statistics of the Decision Forest prediction 

SUPPLEMENTARY ANALYSIS 

BIOPERL & PERL 
To first execute the alignment, most online 

documentation made it seem apparent that BioPerl 

was a better tool to use for sequence alignments. 

BioPerl runs through modules designed by 

Christopher Fields for a wide array of applications 

such as DNA statistical analysis, sequence alignments 

and many more. When trying to use BioPerl we ran 

into numerous issues. As Macintosh continues to 

update their Mac-OSX software, it seems that BioPerl 

tends to lag behind. All of the documentation 

supported alignment features that were out of date. 

The build in Perl modules use specific programs that 

had to be installed on the user's machine, such as 

NCBI Blast. However, NCBI Blast has updated their 

program to no longer contain the Bl2seq feature. This 

was a big issue because all of the documentation for 

aligning sequences used the Bl2seq program. Next, we 

figured we could use a different program and still run 

it through BioPerl such as Tcoffee or Muscle. These 

two programs are also used as alignment tools for 

protein sequences. Tcoffee and Muscle installed on the 

machine perfectly. However, the BioPerl modules for 

Tcoffee and Muscle had to be separately installed 

through BioPerl “BioPerl-Run” add on package. When 
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trying to install the “BioPerl-Run” package through 

the terminal, following the documentation, the 

program would fail to install due to a certain number 

of failed tests during compilation. There was also a 

“BioPerl-Ext” package that contained other modules 

that could be useful. However, that package could 

only be installed once “BioPerl-Run” had successfully 

installed. After reading many online sources, it was 

stated that many core features have been removed 

from the “BioPerl-Run” package, causing the tests to 

fail upon compilation. Some people were able to 

correct the issue by installing parts of the package 

piece by piece and testing each piece before 

continuing. 

We also were not sure whether the variation between 

our scores would even be reliable to draw any 

conclusions. So to spend this much time still in 

BioPerl was no longer worth it. Instead, a Perl script 

was written in order to generate a score based on the 

reference sequence for NAGLU. The Perl script was 

able to count all of the amino acids in the reference 

sequence and generate an overall score of the protein 

sequence based on the Blosum62 scoring matrix. See 

figures 8 and 9 below. When generating a new score 

for the alignment based on the single amino acid 

change, there was not a large variation between the 

scores. We did see the general trend that higher 

scores were generated when the amino acid 

substitution did not change the charge. However, 

those scores were still not consistent throughout. 

Amino acids that changed from basic charge groups to 

polar charged groups seemed to have the lowest scores 

in the data set, but it was not true for every basic to 

polar amino acid change. This does not allow us to 

conclude that every basic charge change to a polar 

charge generates the lowest score. If we had more 

than one mutation to base our conclusion off of, this 

could have given us more vital information. Even 

when executed on BLAST to check scores, BLAST did 

not generate more than a 1% variation difference with 

these sequences. See table 10 and figures 10 and 11 

below. If we had several mutations to study the scores 

would have varied more and we may have been able 

to draw a better conclusion.  

 

 

 
Figure 8: Samples of Perl script for Reference Amino Acid Scoring 
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Figure 9: Output of Perl script for Reference Amino Acid Scoring 

 

 
 

Table 10: Sample Output of Amino Acid Scoring 

 
 

Figure 10: Scatter plot of generated Amino Acid substitution scores 

 

 
 Figure 11: Bar chart of generated Amino Acid substitution scores 

 

   

VISUAL ANALYSIS 
Further analysis was also performed to attempt to visually identify any patterns between amino acid type changes 

(polar to non-polar, for example) and location in the sequence. This showed no visible pattern. However, it did show 

that the Decision Forest performed best (had the lowest standard deviation) for the extrema cases in the amino acid 

changes (those closest to 0 or closest to 1). See figure 12 below. 
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Figure 12: Visualization of variant position versus amino acid type change. 

(Also note that standard deviation and domain are also shown.) 

Furthermore, plotting exonic function versus position and type changes also showed very little in regards to 

patterns. See figure 13 below. 

 
Figure 13: Visualization of exonic function versus position and amino acid type change. 
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FUTURE WORK 
Future work is still needed to test the validity of these 

predictions. The predictions are made solely on the 

likelihood that a given mutation in an amino acid 

sequence will affect the functionality of the resulting 

enzyme. Just because our analysis gave a low score 

for a mutation (meaning that the mutation is likely 

lower the enzymatic activity in reference to wild-type 

activity), the change may not cause anything at all or 

may enhance the functionality of the enzyme. 

One other note is that the independent variables that 

we have taken into account definitely do not explain 

all the variation in the enzymatic activity for a 

mutation. There may be other factors to take into 

account, which would then need to be incorporated 

into the data to again predict the enzymatic activity. 
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